Lesson 16. The Points-After-Touchdown Problem

1 The problem

- In an NFL football game, after scoring a touchdown, a team is given the option to try for:
 - o a **1-point conversion**: 1 extra point by a field goal from the 15-yard line, or
 - o a **2-point conversion**: 2 extra points by advancing the ball into the end zone from the 2-yard line
- Whether to "go for 2" is a classic debate a few discussions on the topic:
 - o https://theringer.com/nfl-two-point-conversions-pittsburgh-steelers-mike-tomlin-65d47282d853
 - o https://fivethirtyeight.com/features/more-nfl-teams-are-going-for-two-just-as-they-should-be/
- Adding to the debate: in 2015, 1-point attempts were moved from the 2-yard line to the 15-yard line
- Conversion success rates from the 2014-2017 regular seasons (from http://www.pro-football-reference.com/):

	2014	2015	2016	2017
1-point conversion success rate	0.993	0.942	0.936	0.940
2-point conversion success rate	0.483	0.479	0.486	0.451

- Based on the current score and time remaining, should a team "go for 1" or "go for 2" in order to maximize the probability that it wins the game?
- How does the 2015 rule change affect a team's optimal conversion strategy?
- Let's try to answer these questions by modeling this problem as a stochastic dynamic program
- We will be roughly following this paper:
 - H. Sackrowitz (2000). Refining the point(s)-after-touchdown decision. Chance 13(3): 29-34.

2 Data

Two teams: A and B	
o Assume that we (the decision-makers) are Team A	
Suppose we have the following data:	
T = total number of possessions	
$p_n = \Pr\{1\text{-pt. conv. successful for Team } n \mid 1\text{-pt. conv. attempted by Team } n\}$ $q_n = \Pr\{2\text{-pt. conv. successful for Team } n \mid 2\text{-pt. conv. attempted by Team } n\}$	for $n = A, B$ for $n = A, B$
$b_1 = \Pr\{1\text{-pt. conv. attempted by Team B}\}$ $b_2 = \Pr\{2\text{-pt. conv. attempted by Team B}\}$	
$t_n = \Pr\{\text{TD by Team } n \text{ in 1 possession}\}\$ $g_n = \Pr\{\text{FG by Team } n \text{ in 1 possession}\}\$	for $n = A, B$ for $n = A, B$
$z_n = \Pr\{\text{no score by Team } n \text{ in 1 possession}\}$ $r = \Pr\{\text{Team A wins in overtime}\}$	for $n = A, B$
What is the relationship between b_1 and b_2 ?	
What is the relationship between t_n , g_n and z_n ?	
What is the probability that Team B scores 0 after a touchdown?	

3 The stochastic DP

• Stages:

$$t = 0, 1, ..., T - 1 \leftrightarrow \text{end of possession } t$$

 $t = T \leftrightarrow \text{end of game}$

- For our purposes, a possession ends when a team scores (TD or FG), or loses possession without scoring
- States:

$$(n, k, d) \leftrightarrow \text{Team } n\text{'s possession just ended} \quad \text{for } n \in \{A, B\}$$

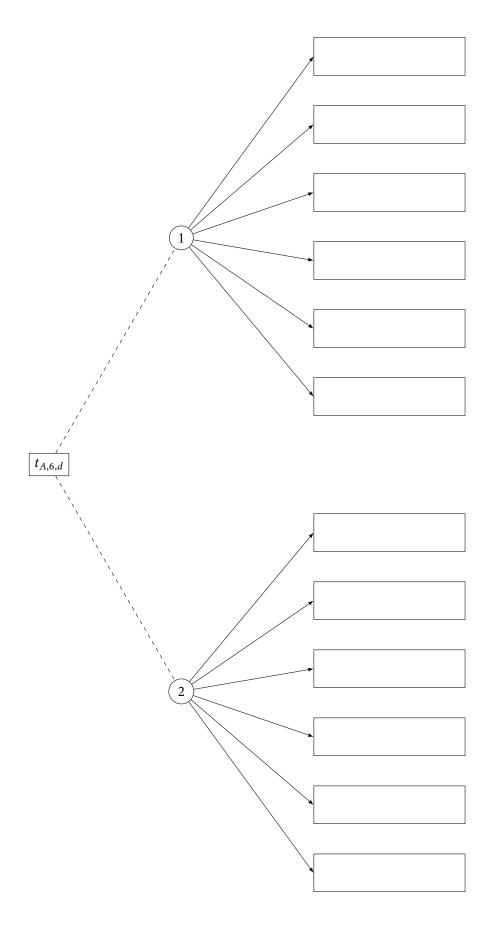
$$\text{Team } n \text{ just scored } k \text{ points} \quad \text{for } k \in \{0, 3, 6\}$$

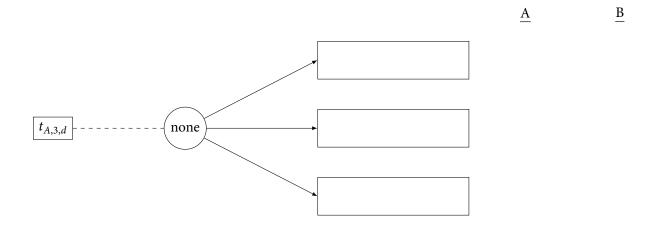
$$\text{Team A is ahead by } d \text{ points} \quad \text{for } d \in \{\dots, -1, 0, 1, \dots, \}$$

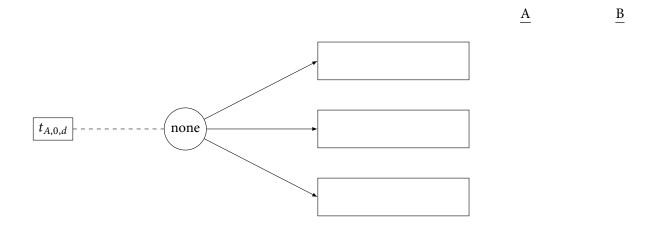
• Value-to-go function:

$$f_t(n, k, d)$$
 = maximum probability that Team A wins when in state (n, k, d) at the end of possession t for $n \in \{A, B\}, k \in \{0, 3, 6\}, d \in \{..., -1, 0, 1, ...\}$

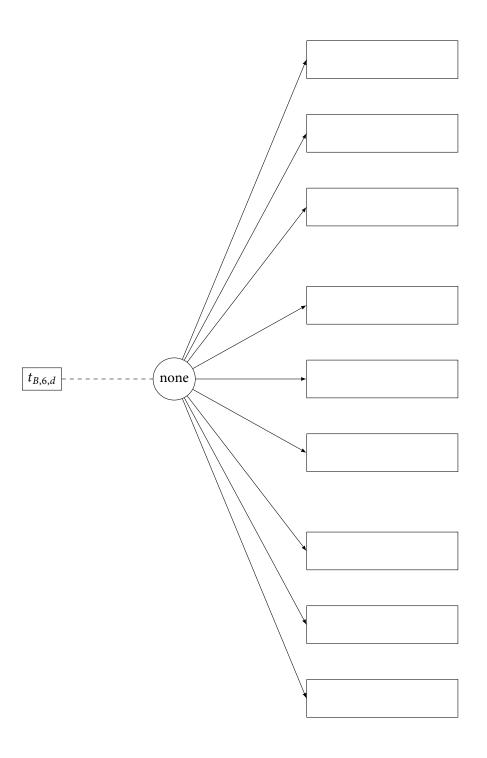
• Allowable decisions x_t at stage t and state (n, k, d):

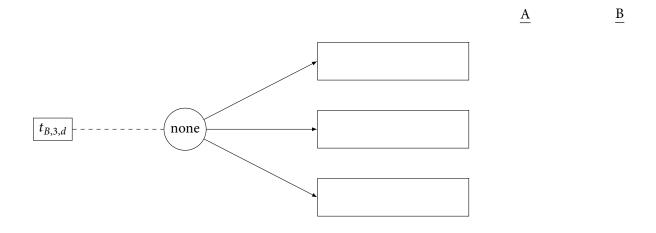

$$x_t \in \{1, 2\}$$
 if $n = A$ and $k = 6$
 $x_t = \text{none}$ if $n = A$ and $k \in \{0, 3\}$
 $x_t = \text{none}$ if $n = B$ and $k \in \{0, 3, 6\}$

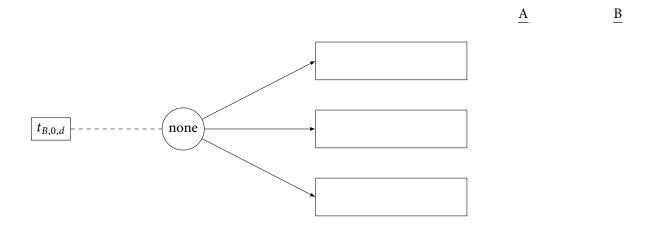

• We need to consider transitions from the following states:

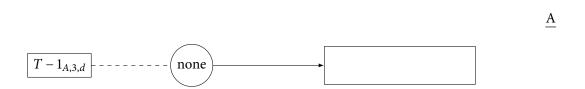

$$(A, 6, d)$$
 $(A, 3, d)$ $(A, 0, d)$ for all d

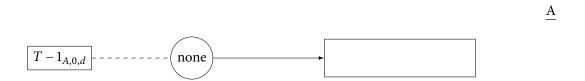
• Since our objective is to maximize the probability of winning, we set all the contributions in stages t = 0, 1, ..., T - 1 to 0, just like in the investment problem in Lesson 15

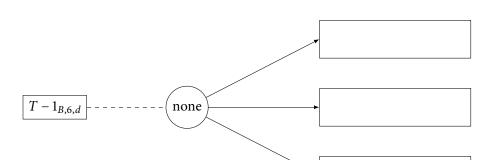

<u>A</u> <u>B</u>

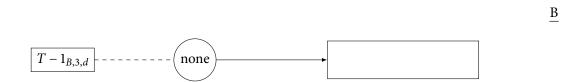


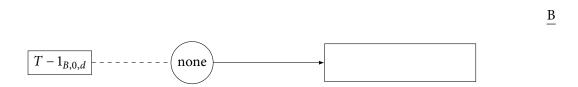



<u>A</u> <u>B</u>









 $\underline{\mathbf{B}}$

